Heraeus

Precious Metals

Precious Metal Catalysts

for the Fine Chemical, Pharmaceutical and Agrochemical Industry

Process Optimization with **Precious Metal Catalysis**

Catalysts are a particularly crucial component in the production processes of the fine chemical, pharmaceutical and agrochemical industries. Complex molecules require complicated, multistep synthesis routes that often result in low yields and a larger amount of by-products. For companies in these industries, optimizing these synthesis pathways is critical as it directly impacts cost efficiency and sustainability. This challenge requires innovative approaches and advanced technologies to improve production methods and reduce waste.

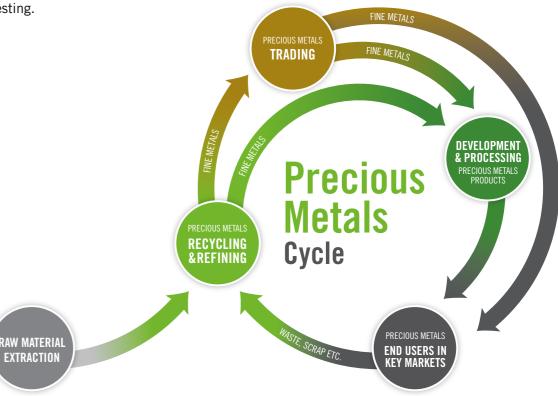
Heraeus Precious Metals offers a comprehensive range of homogeneous and heterogeneous precious metal catalysts that are characterized by high activity, selectivity and reusability. This makes them the perfect tool for carrying out complex syntheses, e.g. for the production of active ingredients under low pressure and at low temperature, which nevertheless enable the highest yields. The application of recycling strategies enhances the cost-efficient and sustainable use of scarce precious metals.

HOMOGENEOUS CATALYSTS

- Extensive portfolio of salts and compounds for all precious metals
- Focus on palladium phosphines for C-C coupling reactions
- High quality catalysts, e.g. for asymmetric hydrogenation, hydroformylation, hydrosilylation
- > Tailor-made solutions for customer processes

HETEROGENEOUS CATALYSTS

- High quality catalysts, e.g. for hydrogenation and oxidation reactions
- Customized and value engineered catalyst solutions to your application needs
- > Perfect combination of activity, selectivity and reusability for highest performance
- High expertise in custom and toll manufacturing solutions


A Unique One-Stop-Shop: Precious Metals Services

PRECIOUS METALS TRADING

Through trading centers in Hanau (Germany), New York City, Shanghai and Hong Kong, Heraeus Precious Metals is able to execute precious metal trades under current market conditions. In addition to sales and purchasing transactions, it can provide financing options to it's customers based on precious metal leasing.

PRECIOUS METALS ANALYTICS

The Global Competence Center Analytics combines state-of-the-art equipment for a wide range of analytical methods with a highly qualified team of precious metal scientists. Services include expert advice to customers to provide them with optimum support in product quality, development projects and the determination of precious metal content and purity in order to meet industry standards for quality and material testing.

PRECIOUS METALS INNOVATION

Heraeus Precious Metals operates Global Innovation Centers in Germany, China and the USA. The team of researchers and developers work on developing new products, advising customers and collaborating with them on synthesis solutions.

PRECIOUS METALS RECYCLING

As specialists in the handling of spent precious metal catalysts, Heraeus offers the fastest possible precious metal recovery with the highest yield. The reclaimed precious metal can be used again for the manufacture of new catalysts.

Pd(0) Compounds

Pd ₂ (dba) ₃ 51364-51-3	$C_{68}H_{56}O_4Pd_2$	20.0%	1150.03
Pd(dba) ₂ 32005-36-0 0	C ₃₄ H ₂₈ O ₂ Pd	20.0%	575.02
Pd ₂ dba ₃ x CHCl ₃ 52522-40-4 0	$C_{52}H_{43}CI_3O_3Pd_2$	20.6%	1035.10
Pd(PPh ₃ P) ₄ 14221-01-3 0	C ₇₂ H ₆₀ P ₄ Pd	9.2%	1155.59

Pd(II) Compounds

Product Name	CAS No.	Formula	Avg. PM Content	Mol. Weight
PdCl ₂	7647-10-1	PdCl ₂	60.0%	177.31
Pd(II) acetate	3375-31-3	$C_4H_{12}O_4Pd$	48.0%	224.51
Pd(II) acetate "N-free"	3375-31-3	$C_{12}H_{36}O_{12}Pd_3$	47.4%	224.51
Pd(acac) ₂	14024-61-4	$C_{10}H_{14}O_4Pd$	34.9%	304.64
[Pd(allyl)Cl] ₂	12012-95-2	$C_6H_{10}CI_2Pd_2$	58.2%	365.89
Pd(COD)Cl ₂	12107-56-1	$C_8H_{12}CI_2Pd$	37.3%	285.50
Pd(MeCN) ₂ Cl ₂	14592-86-4	$C_4H_6CI_2N_2Pd$	41.0%	259.43
Pd(PhCN) ₂ Cl ₂	14220-64-5	$C_{14}H_{10}CI_2N_2Pd$	27.7%	383.57

As key players in organic synthesis, palladium catalysts offer a wide array of chemical transformations. Popular options include catalysts like Pd(PPh₃)₄ and Pd(OAc)₂ for crosscoupling and C-H activation respectively. Other significant catalysts such as PdCl₂(PPh₃)₂ and Pd(dba)₂ pave the way for Stille and Sonogashira reactions. Further palladium compounds and information are available on request. Our technical experts will be pleased to advise you on your inquiries.

Pd(II) Phosphine Complexes: Monodentate Ligands

Product Name	CAS No.	Formula	Avg. PM Content	Mol. Weight
Pd(PPh ₃) ₂ Cl ₂	13965-03-2	$C_{36}H_{30}CI_2P_2Pd$	15.0%	701.90
$Pd(P(o-tol)_3)_2Cl_2$	40691-33-6	$C_{42}H_{42}CI_2P_2Pd$	13.5%	786.06
Pd(Amphos) ₂ Cl ₂	887919-35-9	$C_{32}H_{56}CI_2N_2P_2Pd$	15.0%	708.08
Pd(PtBu ₂ Ph) ₂ Cl ₂	34409-44-4	$C_{28}H_{46}CI_2P_2Pd$	17.1%	621.94
Pd(PCy ₃) ₂ Cl ₂	29934-17-6	$C_{36}H_{66}CI_2P_2Pd$	14.4%	738.19

Pd(II) Phosphine Complexes: Bidentate Ligands

Product Name	CAS No.	Formula	Avg. PM Content	Mol. Weight
Pd(dppe)Cl ₂	19978-61-1	$C_{26}H_{24}CI_2P_2Pd$	18.5%	575.74
Pd(dppp)Cl ₂	59831-02-6	$C_{27}H_{26}CI_2P_2Pd$	18.0%	589.77
Pd(dppb)Cl ₂	29964-62-3	$C_{28}H_{28}CI_2P_2Pd$	17.6%	603.79
Pd(dppf)Cl ₂	72287-26-4	$\rm C_{34}H_{28}CI_2FeP_2Pd$	14.5%	731.70
Pd(dppf)Cl ₂ x CH ₂ Cl ₂	95464-05-4	$\rm C_{35}H_{30}CI_4FeP_2Pd$	13.0%	816.64
Pd(dtbpf)Cl ₂	95408-45-0	$\rm C_{26}H_{44}Cl_2FeP_2Pd$	16.3%	651.74
Pd(DPEPhos)Cl ₂	205319-06-8	$C_{36}H_{28}CI_2OP_2Pd$	14.9%	715.88
Pd(Xantphos)Cl ₂	205319-10-4	$C_{39}H_{32}CI_2OP_2Pd$	14.1%	755.95

Further phosphine complexes and information are available on request. Our technical experts will be pleased to advise you on your inquiries.

Pt(II) Compounds

78

Pt

Platinum 195.084

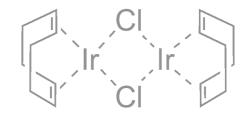
Product Name	CAS No.	Formula	Avg. PM Content	Mol. Weight
Pt(acac) ₂	15170-57-7	$C_5H_7O_2Pt$	49.6%	393.29
Pt(PPh ₃) ₂ Cl ₂	15604-36-1	$C_{36}H_{30}CI_2P_2Pt$	24.7%	790.57
[Pt(cyclohexene)Cl ₂] ₂	12176-53-3	$C_{12}H_{20}CI_4Pt_2$	56.0%	696.26
Pt(COD)Cl ₂	12080-32-9	$C_8H_{12}CI_2Pt$	52.1%	374.16
Pt(nbd)Cl ₂	12152-26-0	C ₇ H ₈ Cl ₂ Pt	54.5%	358.12
Pt(MeCN) ₂ Cl ₂	13869-38-0	$C_4H_6CI_2N_2Pt$	56.0%	348.09
Pt(BnCN) ₂ Cl ₂	15617-19-3	$C_{14}H_{10}CI_2N_2Pt$	41.3%	472.23

Further platinum compounds and information are available on request. Our technical experts will be pleased to advise you on your inquiries.

Hydrosilylation Catalysts

Product Name	CAS No.	Formula	Avg. PM Content	Mol. Weight
Karstedt's catalyst	68478-92-2	O[Si(CH ₃) ₂ CH=CH ₂] ₂ Pt	19.7%	-
Ashby's catalyst	68585-32-0	$C_{12}H_{24}O_4SiPt$	17.0%	-
Pt(dodecene)Cl ₂	129153-28-2	C ₁₂ H ₂₄ Cl ₂ Pt	4.2%	_
(MeCp)PtMe ₃ (UV curing)	94442-22-5	C ₉ H ₁₆ Pt	61.1%	319.30

Hydrosilylation catalysts are available in many concentrations and dilutions – please inquire.


Ir(I) Compounds

Product Name	CAS No.	Formula	Avg. PM Content	Mol. Weight
[lr(COD)Cl] ₂	12112-67-3	$C_{16}H_{24}CI_2Ir_2$	57.2%	671.70
[lr(COD) ₂]BF ₄	35138-23-9	$C_{16}H_{24}I_2Ir_2$	38.3%	495.39
[Ir(COD)OMe] ₂	12148-71-9	$C_{16}H_{24}I_2Ir_2$	45.0%	854.60

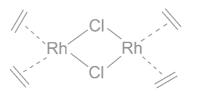
Ir(III) Compounds

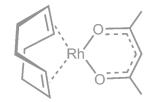
Product Name	CAS No.	Formula	Avg. PM Content	Mol. Weight
Ir acetate	52705-52-9	$C_{12}H_{24}O_{16}Ir_3$	49.0%	1000.97
Ir(acac) ₃	15635-87-7	$C_{15}H_{21}O_{6}Ir$	39.3%	489.53
[IrCp*Cl ₂] ₂	12354-84-6	C ₂₀ H ₃₀ Cl ₄ Ir ₂	48.3%	796.71

Further iridium compounds and information are available on request. Our technical experts will be pleased to advise you on your inquiries.

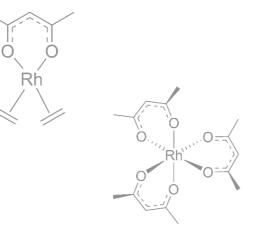
Rh(I) Compounds

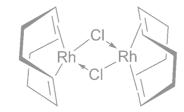
Product Name	CAS No.	Formula	Avg. PM Content	Mol. Weight
Rh(PPh ₃) ₃ Cl	14694-95-2	$\rm C_{54}H_{45}P_3CIRh$	11.1%	925.22
Rh(PPh ₃) ₃ (CO)(H)	17185-29-4	$\mathrm{C}_{55}\mathrm{H}_{45}\mathrm{P}_{3}\mathrm{ORh}$	11.2%	918.78
Rh(acac)(CO) ₂	14874-82-9	$C_7H_7O_4Rh$	39.9%	258.03
Rh(acac)(COD)	12245-39-5	$C_{13}H_{19}O_2Rh$	33.2%	310.19
Rh(acac)(ethylene) ₂	12082-47-2	$C_9H_{15}O_2Rh$	40.0%	258.12
Rh(acac)(PPh ₃)(CO)	25470-96-6	$\rm C_{24}H_{23}O_3PRh$	20.9%	493.32
[Rh(ethylene) ₂ Cl] ₂	12081-16-2	$\rm C_8H_{16}Cl_2Rh_2$	53.0%	388.93
[Rh(COD)CI] ₂	12092-47-6	$\rm C_8H_{16}Cl_2Rh_2$	51.0%	493.08
[Rh(COD) ₂]BF ₄	35138-22-8 / 207124-65-0	$C_{16}H_{24}BF_4Rh$	25.3%	406.07
[Rh(COD)2]OTf	99326-34-8	$C_{17}H_{24}F_3O_3SRh$	22.0%	468.34
[Rh(COD)(dppb)]BF ₄	79255-71-3	$\mathrm{C_{36}H_{40}BF_4P_2Rh}$	14.2%	724.36
[Rh(COD)((R,R)-Et-Du- Phos)]BF ₄	228121-39-9	$\mathrm{C}_{30}\mathrm{H}_{48}\mathrm{BF}_{4}\mathrm{P}_{2}\mathrm{Rh}$	15.6%	660.37
[Rh(nbd)Cl] ₂	12257-42-0	$C_{14}H_{16}CI_2Rh_2$	44.6%	460.99
[Rh(nbd) ₂]BF ₄	36620-11-8	$C_{14}H_{16}BF_4Rh$	27.5%	373.99
[Rh(nbd) ₂]OTf	178397-71-2	$C_{15}H_{16}F_3O_3SRh$	23.6%	436.25

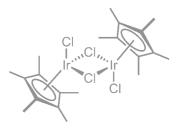

Rh(II) Compounds

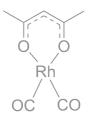

Product Name	CAS No.	Formula	Avg. PM Content	Mol. Weight
Rh(II) acetate	15956-28-2	$\rm C_8H_{12}O_8Rh_2$	46.6%	441.99
Rh(II) octanoate	73482-96-9	$C_{32}H_{60}O_8Rh_2$	26.4%	778.64
Rh(II) 2-ethylhexanoate	20845-92-5	$\mathrm{C}_{24}\mathrm{H}_{45}\mathrm{O}_{6}\mathrm{Rh}$	2.3%	532.52

Rh(III) Compounds

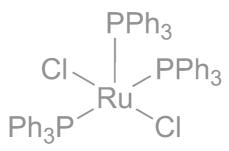

Product Name	CAS No.	Formula	Avg. PM Content	Mol. Weight
Rh(III) acetate	42204-14-8	C ₆ H ₉ O ₆ Rh	37.5%	280.04
Rh(acac) ₃	14284-92-5	$C_{15}H_{21}O_6Rh$	25.7%	403.26
[RhCp*Cl ₂] ₂	12354-85-7	$\mathrm{C_{20}H_{30}Cl_4Rh_2}$	16.7%	618.07

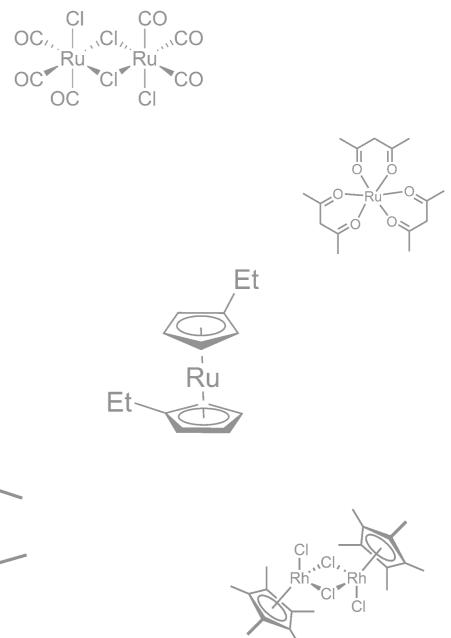

Further rhodium compounds and information are available on request. Our technical experts will be pleased to advise you on your inquiries.

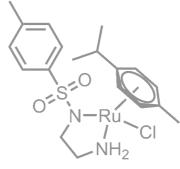



Rh³⁺

Ru(0) Compounds


Product Name	CAS No.	Formula	Avg. PM Content	Mol. Weight	
Ru ₃ (CO) ₁₂	15243-33-1	$C_{12}O_{12}Ru_3$	47.5%	639.33	

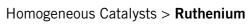

Ru(I) Compounds


Product Name	CAS No.	Formula	Avg. PM Content	Mol. Weight
[CpRu(CO) ₂] ₂	12132-87-5	$C_{14}H_{10}O_4Ru_2$	45.5%	444.37

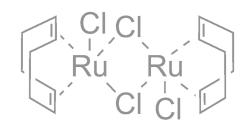
Ru(II) Compounds

Product Name	CAS No.	Formula	Avg. PM Content	Mol. Weight
Ru(PPh ₃) ₃ Cl ₂	15529-49-4	$C_{54}H_{45}CI_2P_3Ru$	10.5%	958.83
[Ru(CO) ₃ Cl ₂] ₂	22594-69-0	$C_6O_6CI_4Ru_2$	39.5%	512.01
Ru(DMSO) ₄ Cl ₂	11070-19-2	$C_8H_{24}CI_2O_4RuS_4$	20.8%	484.48
[Ru(COD)Cl ₂]n	50982-12-2	$C_8H_{12}CI_2Ru$	33.5%	280.16
[Ru(benzene)Cl ₂] ₂	37366-09-9	$C_{12}H_{12}CI_4Ru_2$	40.4%	500.18
[Ru(toluene)Cl ₂] ₂	52462-27-8	$C_{14}H_{16}CI_4Ru_2$	38.3%	528.23
[Ru(p-cymene)Cl ₂] ₂	52462-29-0	$C_{20}H_{28}CI_4Ru_2$	33.0%	612.39
Ru(p-cymene)(TsEN)Cl	208988-63-0	$C_{19}H_{27}CIN_2O_2RuS$	20.9%	484.03
[Ru(mesitylene)Cl ₂] ₂	52462-31-4	$C_{18}H_{24}CI_4Ru_2$	34.6%	584.34





Ru(III) Compounds


Product Name	CAS No.	Formula	Avg. PM Content	Mol. Weight
Ru acetate	55466-76-7	$C_{12}H_{18}O_{13}Ru_3.C_2H_3O_2$	34.7%	-
Ru(acac) ₃	14284-93-6	$C_{15}H_{21}O_6Ru$	25.4%	398.39

Further ruthenium compounds and information are available on request. Our technical experts will be pleased to advise you on your inquiries.

Platinum / Carbon

Platinum / Carbon

Name	Metal	Loading	Support Material	Form	Application
HeraSelect [®] HS-100	Pt	5%	Activated Carbon	Powder	 Hydrogenation of: aromatics; Aliphatic aldehydes and ketones to alcohols; alkenes Reduction of nitro compounds to
					anilines and substituted anilines
					Reduction of nitrilesOxidation of alcohols
HeraSelect [®] HS-101	Pt	1%	Activated Carbon	Powder	 Hydrogenation of: Aliphatic aldehy- des and ketones to alcohols; alkenes Deduction of mitriles
					 Reduction of nitriles Reduction of halogenated nitroaro- matics
HeraSelect [®] HS-102	Pt	1.5%	Activated Carbon	Powder	Hydrogenation of: Aliphatic aldehy-
					des and ketones to alcohols; alkenesReduction of nitriles
					 Reduction of halogenated nitroaro- matics
HeraSelect [®] HS-103	Pt	5%	Activated Carbon	Powder	Hydrogenation of: aromatics;
TielaSelect ² 115-105	11	J /0		i owdei	Aliphatic aldehydes and ketones to
					alcohols; alkenesReduction of nitro compounds to
					anilines and substituted anilines
					Reduction of nitrilesOxidation of alcohols
HeraSelect [®] HS-105	Pt	3%	Activated Carbon	Powder	Hydrogenation of: Aliphatic aldehy- des and ketones to alcohols; alkenes
					Reduction of nitriles
HeraSelect [®] HS-106	Pt	5%	Activated Carbon	Powder	 Hydrogenation of: aromatics; Aliphatic aldehydes and ketones to alcohols; alkenes
					Reduction of nitro compounds to substituted anilines
					Reduction of nitriles
					Oxidation of alcohols

Palladium / Carbon

lame	Metal	Loading	Support Material	Form	Application	Name	Metal	Loading	Support Material	Form	Application
leraSelect [®] HS-200	Pd	5%	Activated Carbon	Powder	Hydrogenation of: aromatic alde- hydes and ketones to alcohols; alkenes; α,β-unsaturated carbonyl compounds, fatty acids, benzyl compounds	HeraSelect [®] HS-202	Pd	5%	Activated Carbon	Powder-wet	Hydrogenation of: aromat hydes and ketones to alco alkenes; α,β-unsaturated compounds, fatty acids, l compounds
					Dehydrogenation						Dehydrogenation
					Dehalogenation						Dehalogenation
					Reduction of nitro compounds to anilines and substituted anilines						Reduction of nitro compo anilines and substituted
					Reduction of nitriles						Reduction of nitriles
					> Oxidation of alcohols						Oxidation of alcohols
HeraSelect® HS-201	Pd	5%	Activated Carbon	Powder-wet	Hydrogenation of: aromatic alde- hydes and ketones to alcohols; alkenes; α,β-unsaturated carbonyl compounds, fatty acids, benzyl compounds	HeraSelect [®] HS-203	Pd	10%	Activated Carbon	Powder	Hydrogenation of: aromat hydes and ketones to alco alkenes; α,β-unsaturated compounds, fatty acids, b compounds
					Dehydrogenation						Dehydrogenation
					Dehalogenation						Dehalogenation
					Reduction of nitro compounds to anilines and substituted anilines						Reduction of nitro compo anilines and substituted
					Reduction of nitriles						Reduction of nitriles
					> Oxidation of alcohols						> Oxidation of alcohols
HeraSelect [®] HS-201 Pd	Pd	5%	Activated Carbon	Powder-dry	hydes and ketones to alcohols; alkenes; α , β -unsaturated carbonyl compounds, fatty acids, benzyl	HeraSelect [®] HS-205	Pd	3%	Activated Carbon	Powder	Hydrogenation of: aromat hydes and ketones to alco alkenes; α,β-unsaturated compounds, fatty acids
					compounds Dehydrogenation						Dehydrogenation
					Dehalogenation						Reduction of nitro compo anilines and substituted
					 Reduction of nitro compounds to 						 Reduction of nitriles
					anilines and substituted anilines						 Oxidation of alcohols
					Reduction of nitriles						
HeraSelect® HS-202	Pd	5%	Activated Carbon	Powder-dry	hydes and ketones to alcohols;	HeraSelect [®] HS-206	Pd	5%	Activated Carbon	Powder	Hydrogenation of: aromat hydes and ketones to alco alkenes; α,β-unsaturated compounds, fatty acids, t compounds
					alkenes; α,β-unsaturated carbonyl compounds, fatty acids, benzyl						Dehydrogenation
					compounds						 Dehalogenation
					Dehydrogenation						 Reduction of nitro compo
					Dehalogenation						anilines and substituted a
					Reduction of nitro compounds to						Reduction of nitriles
					anilines and substituted anilines						Oxidation of alcohols
					Reduction of nitrilesOxidation of alcohols	1	ų —				

Name

Metal Loading Support Material Form

Applica

	Rhodium / Carbon	
ation	Name	Met
Irogenation of: aromatic alde- es and ketones to alcohols; enes; α ,β-unsaturated carbonyl npounds, fatty acids, benzyl npounds	HeraSelect [®] HS-300	Rh
ydrogenation		
alogenation		
uction of nitro compounds to ines and substituted anilines	Ruthenium / Carbo	n

Name	Metal	Loading	Support Material	Form	Application
HeraSelect® HS-900	Ru	5%	Activated Carbon	Powder	Hydrogenation of: aromatic aldehy- des and ketones to alcohols
HeraSelect [®] HS-901	Ru	10%	Activated Carbon	Powder	 Hydrogenation of aromatics Hydrogenation of aliphatic aldehydes and ketones to alcohols

Metal Loading Support Materia

5%

Platnium, Palladium / Carbon

Name	Metal	Loading	Support Material	Form	Application	
HeraSelect [®] HS-112-M	Pt	2.5%	Polymer-based carbon	Micro- spheres	Hydrogenation of alkenes and nitro compounds	
HeraSelect [®] HS-212-M	Pd	2.5%	Polymer-based carbon	Micro- spheres	Hydrogenation of alkenes and nitro compounds	

Palladium / Alumina

Name	Metal	Loading	Support Material	Form	Application
HeraSelect [®] K-02145	Pd	5%	Alumina	Powder	HydrogenationBenzyl-Group elimination
HeraSelect [®] K-0250 NG	Pd	5%	Alumina	Powder	HydrogenationBenzyl-Group elimination

Contact us and we guide you to the most efficient option for your process including type, precious metal loading and recommended operating conditions.

HeraSelect [®] HS-207	Pd	10%	Activated Carbon	1	 Hydrogenation of: aromatic aldehydes and ketones to alcohols; alkenes; α,β-unsaturated carbony compounds, fatty acids, benzyl compounds Dehydrogenation Dehalogenation Reduction of nitro compounds to anilines and substituted anilines Reduction of nitriles Oxidation of alcohols
HeraSelect® HS-208	Pd, Pt	4%; 1%	Activated Carbon	Powder	
HeraSelect® HS-209	Pd	5%	Activated Carbon	1	 Hydrogenation of: aromatic aldehydes and ketones to alcohols; alkenes; α,β-unsaturated carbonyl compounds, fatty acids, benzyl compounds Dehydrogenation Dehalogenation Reduction of nitro compounds to anilines and substituted anilines Reduction of nitriles Oxidation of alcohols
HeraSelect [®] HS-210	Pd	5%	Activated Carbon	1	 Hydrogenation of: aromatic aldehydes and ketones to alcohols; alkenes; α,β-unsaturated carbony compounds, fatty acids, benzyl compounds Dehydrogenation Dehalogenation Reduction of nitro compounds to anilines and substituted anilines Reduction of nitriles Oxidation of alcohols
HeraSelect [®] HS-211	Pd	7%	Activated Carbon	Powder	 Dehalogenation Reduction of nitro compounds to anilines and substituted anilines Reduction of nitriles

Contact us and we guide you to the most efficient option for your process including type, precious metal loading and recommended operating conditions.

Heterogeneous Catalysts > Rhodium, Ruthenium, Platnium, Palladium

Support Material	Form	Application	Ruthenium 101.07
Activated carbon	Powder	 Hydrogenation of aromatics Hydrogenation of aliphatic aldehydes and ketones to alcohols 	78 Pt Platinum 195.084

45

Rhodium 102.9055

44 D++

> ⁴⁶ Pd

Around the Globe ... and Around the Clock

Heraeus Precious Metals is globally leading in the precious metals industry. The company is part of the Heraeus Group and covers the value chain from trading to precious metals products to recycling. It has extensive expertise in all platinum group metals as well as gold and silver.

With about 3,000 employees at 15 sites worldwide, Heraeus Precious Metals offers a

broad portfolio of products that are essential for many industries such as the automotive, chemicals, semiconductor, pharmaceutical, hydrogen and jewelry industry.

By 2025 Heraeus Precious Metals will be the first company in the industry that operates carbon neutral.

Circlear – Products Made with 100% Recycled Precious Metals

Using Circlear allows you to reduce your Scope 3 carbon footprint: Recycled precious metals enable circularity for these scarce resources and reduce the need for extraction of primary metals. Precious metals that are recovered using recycling processes have the same high quality and purity. Their major benefit is the significantly reduced carbon footprint – up to 98%* lower than that of

Chemicals Footprint

primary metals. They therefore have a lower adverse impact on the environment and biodiversity.

All Circlear precious metals are 100% recycled, originating from secondary sources such as spent chemical or automotive catalysts. This is verified and audited by TÜV Süd in accordance with ISO 14021.

We conserve resources and promote a circular economy.

We are committed to realize the potential of precious metals as responsibly as possible.

> We underline this commitment with our pledge to responsibility: precious to us.

Our pledge to RESPONSIBILITY

PEOPLE are **precious** to us

We prioritize people's well-being and interests.

CLIMATE is **precious** to us

We decarbonize our business.

Heraeus Precious Metals

Heraeus Precious Metals GmbH & Co. KG Heraeusstr. 12 – 14 63450 Hanau, Germany chemicals@heraeus.com

www.heraeus-precious-metals.com