

New Pt DPH-materials for the glass industry

Dr. Stefan Vorberg



## Requirements from the glass industry

- Manufacturing of high quality glasses requires use of equipment with
  - High melting point
  - Good mechanical properties
  - High corrosion resistance
  - Good wetting behavior and no glass coloring effects for optical glasses
  - Complex geometry
  - Long service life



#### Suitable materials are

- Conventional Pt- and Pt-Rh-alloys
- Oxide dispersion hardened Pt- and Pt-Rh-alloys
  - ODS: powder metallurgical manufacturing route
  - DPH: casting metallurgical manufacturing route only from Heraeus

# DPH and DPH-A: Casting metallurgical route

- Casting (Pt T<sub>m</sub>=1769°C) + Forging + Rolling
- Oxy-Annealing of sheets / tubes
  - No powder production necessary
    - No air porosity and no impurities during powder production
  - Internal oxidation of the sheet / tube
    - formation of ZrO<sub>2</sub>—particles and even distribution inside the grains and at the grain boundaries
    - → Platinum hardened by ZrO₂-particles at high temperatures



Rolling + Forming of "Platinum components"



















# "Platinum components" for the glass industry



www.dph-materials.com

→ Materials with different properties are required for different components

### Properties of DPH and DPH-A materials





### Materials for tubes and it's components

- High elasticity in the heating-up phase
- Robustness to changes in temperature
- High form stability of the components, even in the weld joints
- High ductility
- Good workability
- Excelent weldability

### Materials for active parts like stirrers & plungers

- Excellent combination of strength and ductility
- High torsional rigidity for stirrers and plungers

- Very high strength
- High stiffness
- Excelent weldability

## Properties of DPH and DPH-A materials

### DPH



- → Same chemical composition
- Different thermo mechanical treatments for DPH and DPH-A
  - → Different microstructure (grains)
  - → Different nanostructure (particles)

#### **DPH-A**



### Materials for tubes and it's components

- $ZrO_2 = 1800 \text{ ppm}$
- ZrO<sub>2</sub>-particle size 100–450 nm
- Round shape grains
- Grain size 60 90 µm

### Materials for active parts like stirrers & plungers

- $ZrO_2 = 1800 \text{ ppm}$
- Smaller ZrO<sub>2</sub>-particles than in DPH
- Stretched grains
- Grain size 70 120 μm

How to measure mechanical properties?

Creep rupture test

Stress-rupture and creep tests

- Direct electric current heating
- IR-pyrometer
- Temperature controlled by computer Temperature range: 750 - 3000°C
- Creep curve determination by high resolution camera and the SuperCreep software

Specimen: Strips  $120 \times 4 \times 0.8$  mm 4 shoulders laser cut





# How to measure mechanical properties? Creep rupture test





Video Mechanical properties of DPH and DPH-A extensiometer Creep rupture test pyrometer specimen spherical load frame turbo pump + roughing pump + contoller transformer Loading .... weights High strength and ductile fracture of DPH-materials thyristor



# Mechanical properties of DPH and DPH-A

Creep rupture test



### Different time to rupture for different materials

| • | Pt-10%Rh       | 10 sec. |
|---|----------------|---------|
| • | Pt DPH         | 1 h     |
| • | Pt DPH-A       | 30 h    |
| - | Pt-10%Rh DPH   | 100 h   |
|   | Pt-10%Rh DPH-A | 4000 h  |



Mechanical properties of DPH and DPH-A





# Mechanical properties of DPH and DPH-A Creep rupture test

### DPH-materials show high creep elongation



- Pt DPH ≈ Pt-10%Rh DPH > 20%
- Pt DPH-A ≈ Pt-10%Rh DPH-A ≈ 8 10%
- DPH > DPH-A materials

# Equipment with complex geometry Welding of DPH and DPH-A materials



# Equipment with complex geometry Welding of DPH and DPH-A materials

- Excellent weldability by all welding processes
  - TIG, Laser, EB, Plasma ...
- Fine grained microstructure in welding zone
  - Large amounts of ZrO<sub>2</sub> remain in the material



High ductility > 20% of welded material





# Equipment with complex geometry Welding of DPH and DPH-A materials



- Mechanical properties of weld's are similar to the base metal
  - > 80% creep rupture strength maintained
- Welded DPH-A has similar strength than DPH base material

### Corrosion resistance of DPH and DPH-A materials

Pt-10%Rh show low corrosion resistance due to fast grain coarsening







Short diffusion paths and easy formation of corrosion cracks along grain boundaries

DPH and DPH-A show <u>high corrosion resistance</u> due to small grain sizes



- → DPH and DPH-A shows no grain coarsening
- → long diffusion paths lead to high corrosion resistance
- → No material and Pt-part failure



# Long term stability of DPH and DPH-A materials

High microstructure stability during long term operation at high temperatures



- No noticeable grain coarsening
- Mechanical properties after operation similar to initial state



# Wetting behaviour of DPH and DPH-A materials

- DPH and DPH-A grade shows similar wetting behaviour
- No risk to combine DPH and DPH-A in one glass melting system
- No coloring effect for optical glasses





### Your benefits

Combine the established DPH and new DPH-A grade in your systems for

Longer service life

- Less shut-downs of glass production lines
- Heraeus as full service provider
  - Support in precious metals handling
  - Technical support
  - Optimization of your Pt-systems
  - Recycling of used parts
- Best overall cost-benefit-ratio

# New Pt DPH-materials for the glass industry







# Thank you very much for your attention











### Acknowledgement

- Prof. Bernd Fischer
   University of Applied Sciences Jena
   Carl-Zeiss-Promenade 2
   D-07745 Jena, Germany
- Prof. Uwe Glatzel and Dr. Rainer Völkl University Bayreuth Ludwig-Thoma-Straße 36b D-95447 Bayreuth, Germany